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Abstract

Regular maps are cellular embeddings of graphs on surfaces

with a transitive group of automorphisms on the triangles of the

barycentric subdivision of the map. If these maps are both self-

dual and self-Petrie-dual, while having all possible exponents, we

call them super-symmetric. S. E. Wilson in his dissertation stated

that a certain class of regular maps Mn for n ≥ 1 are both self-

dual and self-Petrie-dual, which he computationally verified for

n ≤ 100. Later on, D. Archdeacon, M. Conder and J. Širáň

proved duality and self-duality of Wilson’s maps for every n ≥ 1

and they also proved their super-symmetry. Then, G. A. Jones

proposed that Wilson’s maps should be isomorphic to a parallel

product of certain maps constructed from dihedral groups, and

at the same time, they should also arise from triangle groups

by factoring them with certain special normal subgroups derived

from second-order commutator subgroups of triangle groups. In

this dissertation we analyze both proposals of Jones and prove

that the construction of Wilson’s maps using parallel products

of maps derived from dihedral groups with an additional auto-

morphism of order 2 and the construction using the factorization

of triangle groups are equivalent only for odd n ≥ 3. We also

extended our analysis to generalised dihedral groups and their

parallel products.
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Abstrakt

Regulárne mapy sú bunečné vnorenia grafov do plôch s tranz-

itívnou grupou automorfizmov na trojuholníkoch barycentrickej

subdivízie mapy. V prípade, že sú tieto mapy samoduálne aj

samo-Petrie-duálne, pričom majú všetky možné exponenty, nazý-

vame ich super-symetrické. S. E. Wilson vo svojej PhD dizertácii

navrhol skúmať istú triedu regulárnych máp ,pričom overil, že

pre n ≤ 100 sú tieto mapy samoduálne a aj samo-Petrie-duálne.

Neskôr D. Archdeacon, M. Conder a J. Širáň to ukázali pre všetky

prirodzené n a navyše dokázali, že dokonca všetky ich prípustné

rotačné mocniny sú navzájom izomorfné, a teda, že ide o super-

symetrické mapy. G. A. Jones potom uviedol, že Wilsonove mapy

by mali byť paralelným produktom istých máp skonštruovaných z

dihedrálnych grúp a zároveň by rovnako mali vzniknúť z trojuhol-

níkových grúp ich faktorizáciou istými špeciálnymi normálnymi

podgrupami. V našej dizertačnej práci analyzujeme obe Jonesove

konštrukcie a dokazujeme, že konštrukcia Wilsonových máp po-

mocou paralelných produktov máp odvodených z dihedrálnych

grúp s dodatočným automorfizmom rádu 2 a konštrukcia pomo-

cou faktorizácie trojuholníkových grúp sú ekvivalentné len pre

nepárne n ≥ 3. Taktiež analyzujeme zovšeobecnené dihedrálne

grupy a ich paralelné produkty.
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1 Background

A map is a cellular embedding of a connected graph on a

surface, or, equivalently, a cellular decomposition of a connected

surface. A map automorphism, or, colloquially, a symmetry of

a map, is a permutation of its flags (triangles of its barycentric

subdivision) that preserves flag adjacencies. The group Aut(M)

of all automorphisms of a map M (under composition of permu-

tations) acts semi-regularly on the flag set of M ; if this action is

regular the map M itself is said to be regular.

Regularity of a map M also implies transitivity of the induced

action of Aut(M) on faces, vertices, edges and arcs (edges with

direction). In particular, the length of each face boundary walk

is the same and the valency of each vertex is constant; for future

reference we will denote these quantities by l and m and speak

about a regular map of type {l,m}.
Let z be a fixed flag of a regular map M . By regularity,

reflections in the three sides of z are automorphisms of M , which

are usually denoted ri for i ∈ {0, 1, 2}, the subscript referring

to i-dimensional objects (vertex, edge, and face incident to z)

being moved by ri (the remaining two objects being preserved by

ri). The compositions r0r2, r1r2 and r0r1 then are, respectively,

automorphisms which locally rotate the map about the centre of

an edge, about a vertex incident to the edge, and about a face
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incident to both. If M has type {l,m}, connectivity implies that

the group G = Aut(M) admits a presentation of the form

G = Aut(M) = ⟨r0, r1, r2 | r20, r21, r22, (r0r2)2, (r1r2)m, (r0r1)
l, ...⟩,

where dots indicate relators needed to complete the presentation.

Regularity further implies that the flag set of M can be identified

with the set {g(z) | g ∈ G, and hence with the group G acting on

itself by left multiplication.

Without going into too much detail and mimicking the way we

introduced regular maps, one may check that for a map M on an

orientable surface, an automorphism of M that preserves the ori-

entation of the supporting surface of M (in short, an orientation-

preserving automorphism) is completely determined by its image

of any particular arc. It follows that the group Aut+(M) of all

orientation-preserving automorphisms of M acts semi-regularly

on the arcs (not flags) of M . If this action is transitive, and

hence regular, we speak about an orientably-regular map, or a

rotary map in the terminology of [14]. Such maps correspond to

those which intuitively exhibit the ‘highest level of orientation-

preserving symmetry’.

Regular maps of type {ℓ,m} on simply connected surfaces (a

sphere, a Euclidean plane, or a hyperbolic plane, according to

whether 1/ℓ+1/m is greater than, equal to, or smaller than 1/2)

are of special importance ane are known as universal tessellations
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U(ℓ,m). Their orientation-preserving automorphism groups are

known as (ordinary) triangle groups ∆+(ℓ,m) and can be pre-

sented in the form

∆+(ℓ,m) = ⟨R,S | Rm, S2, (RS)ℓ⟩

Every orientably-regular map M of type {ℓ,m} is then a smooth

normal quotient of U(ℓ,m), and, similarly, the group Aut+(M)

is a smooth normal quotient of ∆+(ℓ,m), with presentation

Aut+(M) = ⟨r, s | rm, s2, (rs)l, ...⟩

An orientably-regular map M given by a presentation of its

group H = Aut+(M) will be denoted M = (H; r, s).

The universal maps U(ℓ,m) are actually regular and their

full automorphism group (including orientation-reversing symme-

tries) is known as the full or extended triangle group ∆(ℓ,m), with

presentation

∆(ℓ,m) = ⟨R0, R1, R2 | R2
0, R

2
1, c

2, (R0R1)
ℓ, (R1R2)

m, (R2R0)
2

A regular map M with Aut(M) = ⟨ro, r1, r2⟩ as before is again a

smooth normal quotient of U(ℓ,m), and the group Aut(M) is a

smooth normal quotient of ∆(ℓ,m). For such a regular map M

with G = Aut(M) we will use the notation M = (G; r0, r1, r2),

or M = (G; a, b, c) if it is desirable to avoid subscripts.
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Let (G; a, b, c) and (G′; a′, b′, c′) be two regular maps. The two

maps are known to be isomorphic if and only if there exists an

isomorphism ϕ where: G → G′;ϕ(a) = a′, ϕ(b) = b′, ϕ(c) = c′ .

New maps can be constructed from old ones with the help

of map operators, and we will consider in detail the operators

of duality, Petrie duality and rotational powers. We will only

consider regular maps in what follows, although the three types

of operators are applicable to general maps.

Let M = (G; r0, r1, r2) be a regular map. The operator of

duality assigns the dual map D(M) to M , defined by D(M) =

(G; r2, r1, r0), that is, by swapping the roles of the involutions

r0 and r2. Loosely speaking, the dual can be obtained from the

given map by interchanging its vertices with faces and its faces

with vertices. If the map M is isomorphic to the map D(M),

the map is called self-dual. Let us point out that the operator of

duality preserves the supporting surface of the map M .

Another operator we will introduce is the one of Petrie-duality,

assigning to a regular map M = (G; r0, r1, r2) its Petrie dual

P (M) = (G; r0r1, r1, r2). The Petrie dual arises as a different

embedding of the underlying graph of M , with new faces deter-

mined as follows: if we select r0r1 as the first operator instead of

r0, face boundary walks will be created by walking along edges,

switching sides in each midpoint and following all corners. These

movements create closed walks which are called Petrie walks (also
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known as zigzag walks because of their ’zigzag’ shape). All Petrie

walks have the same length and each edge is included in exactly

two distinct walks, therefore Petrie walks can be considered as

faces of the Petrie-dual map D(M) which are called Petrie poly-

gons.

The operator of Petrie-duality preserves the underlying graph

but does not preserve supporting surface in general. In case there

exists an isomorphism between maps M and P (M), the map M

is self-Petrie-dual.

Along with operators of duality and Petrie duality we have

also so called hole operators or rotational powers that create new

maps from old ones while keeping the underlying graph and the

automorphism group unchanged.

To explain this, let M = (G; r0, r1, r2) be a regular map of

valency m. For every j relatively prime to m, the j-th rotational

power M (j) is defined as the regular map (G; r0, r
′
1, r2). When

the j-th rotational power M (j) is isomorphic to the original map

M we say that j as an element of the group of units mod m is an

exponent of M .

A regular map M of valency m will be called super-symmetric

if it is self-dual, self-Petrie-dual and if every unit mod m is its

exponent. The type of such a super-symmetric map is necessarily

{m,m}.
Next, we introduce useful algebraic tools for constructing new
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regular maps from old ones. Let M1 = (G;x1, y1, z1) and M2 =

(G2;x2, y2, z2) be a pair of regular maps, where, for i ∈ {1, 2},
the groups

Gi = ⟨xi, yi, zi|x2i , y2i , z2i , (xizi)2, (yizi)mi , (xiyi)
ℓi , ...⟩

are presented as in (1), so that Mi is of type {ℓi,mi}. (The

canonical generators r0, r1, r2 have been replaced here by xi, yi, zi

to avoid double subscripts.) The parallel product M1||M2 is the

map M = (G;x, y, z), where G = G1||G2 in the sense of Wilson

is the parallel product of the groups G1 and G2, defined as the

subgroup of G1 × G2 generated by the pairs x = (x1, x2) y =

(y1, y2) and z = (z1, z2). Observe that M has type {ℓ,m}, where

ℓ = ord(xy) = lcm(ℓ1, ℓ2) and m = ord(yz) = lcm(m1,m2).

We now describe a different but equivalent way of introducing

parallel profuct of maps, following Jones [7] and based on using

the extended (and generalised) triangle group Γ = ∆(2,∞,∞),

with presentation

Γ = ⟨X,Y, Z|X2, Y 2, Z2, (XZ)2⟩, (1)

isomorphic to a free product ⟨X,Z⟩ ∗ ⟨Y ⟩ ≃ (C2 × C2) ∗ C2 of

the Klein four-group (also often denoted V4) with C2. If, for

i ∈ {1, 2}, θi : Γ → Gi are the natural epimorphisms and Ki =

ker(θi), then G1||G2 ≃ G/K with K = K1 ∩K2 and the parallel

product M = M1||M2 can equivalently be described by M =

(G/K;XK,Y K,ZK) .
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The construction of Jones can be extended to any finite num-

ber of maps in an obvious way and we omit details.

2 Research stimuli

S. E. Wilson in the course of preparation for his dissertation

thesis [12] in 1976 suggested to study a family of regular maps

with automorphism groups defined by a specific presentation. For

every n ≥ 1 let Wn be a group given by the presentation

⟨a, b, c|a2, b2, c2, (ac)2, (ab)2n, (bc)2n, (abc)2n, [(cb)2, (ba)2]⟩ (2)

It can be shown [14, 1] that Wn has order 8n3, thus giving rise

to a family MWn of finite regular maps

MWn = (Wn; a, b, c)

of type {2n, 2n}; to adhere to the previous notation here we have

used a, b, c for r0, r1, r2, respectively. Wilson computationally ver-

ified that for every n ≤ 100 the regular map MWn is, in addi-

tion, both self-dual and self-Petrie-dual. Later, D. Archdeacon,

M. Conder and J. Širáň proved that these maps are not only self-

dual and self-Petrie-dual for all n ≥ 1 but that they are invariant

also to all admissible exponents. Therefore, they proved that the

maps MWn defined by (2) are super-symmetric. Note that the

length of Petrie walks in MWn, equal to the order of abc, is also

2n.
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Two interesting alternative constructions of the family MWn

of Wilson’s super-symmetric maps were suggested by Jones [7],

and in what follows we describe both.

The first is based on considering a particular normal subgroup

of finite index in the group Γ given by (1). As usual, let Γ′ be the

commutator subgroup of Γ and let (Γ′)′ = Γ′′ be the second-order

commutator subgroup of Γ. Further, let (Γ′)(n) be the subgroup

of Γ′ generated by all n-th powers of elements of Γ′. Both Γ′′ and

(Γ′)(n) are characteristic subgroups of Γ, so that their product

L = Γ′′(Γ′)(n) is a normal subgroup of Γ; because Γ is generated

only by 3 involutions and because of the presence of commutators

and n-th powers in L the quotient Γ/L is finite. In fact, one

can see that commutators (cb)2 and (ba)2 are generators of the

normalizer Γ′ of the subgroup of Γ. Digging into the presentation

a little deeper one can realize that except for a2, b2, c2 and (ac)2,

the only relators included in the presentation (2) are (cb)2 and

(ba)2 raised to the n-th power along with the n-th power of the

product (cb)2(ba)2 = (cba)2, and the commutator [(cb)2, (ba)2].

It follows that Γ/L is indeed isomorphic to the Wilson group

Wn introduced in (2).

The second suggestion of Jones made in [7] was that the super-

symmetric maps MWn for each n ≥ 1 may be constructed as

parallel products of regular maps derived from extended dihedral
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group D∗
2n obtained from the group

D2n = ⟨r, s|r2n, s2, (rs)2⟩

by adjoining an automorphism of order 2 inverting both r and s.

In more detail, for even n ≥ 1 the group D∗
2n turns out to

be an epimorphic image of the parent group Γ of the form (1).

Mimicking Jones’s construction based on epimorphisms Γ → D∗
2n

for a fixed n ≥ 1 (and hence fixed target group G = D∗
2n), in

[7] it is suggested that the map MWn is isomorphic to a parallel

product determined by the intersection of all distinct kernels of

epimorphisms Γ → D∗
2n.

The two suggestions of Jones [7] actually provided an impetus

for this thesis and for the papers [4, 5]. Namely, it is not clear at

all if the two descriptions result in isomorphic maps. In fact, and

to our surprise, this turned out to be true only for odd values of

n, and for even n the parallel product results in a map obtained

from MWn by a factorisation by a (normal) subgroup isomorphic

to C2. Loosely speaking, for even n ≥ 2 the parallel product

construction by Jones gives only a half of Wilson’s map MWn.

3 Results

For an arbitrary positive integer n, we will consider the dihe-

dral group D2n of order 4n, with a cyclic subgroup of order 2n,
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defined by the presentation

∆+
2n ≃ D2n = ⟨r, s | r2n, s2, (rs)2⟩ (3)

This group defines an orientably-regular map M of a dipole of

valency n in a sphere, whereby r, s and rs represent rotations

of the map about a fixed vertex, the mid point of a fixed edge

incident with the vertex, and the midpoint of a face incident with

both the vertex and the edge, respectively.

Algebraically, the group (3) can be extended by adjoining an

involution, say, t, such that trt = r−1 and tst = s (that is, t and

s commute). The three elements generate the extended (classical)

dihedral group D∗
2n with presentation

D∗
2n = ⟨r, s, t | r2n, s2, t2, (rs)2, (rt)2, (st)2⟩ . (4)

Letting x = st, y = rt and z = t, the presentation (4) defines a

regular map M2n = M(G;x, y, z) = M(st, rt, t). The valency of

this map is equal to 2n and face length is 2. The map is then of

type {2n, 2}, with automorphism group G = D∗
2n = ⟨x, y, z⟩ =

⟨r, s, t⟩. The subgroup ⟨r, s⟩ ≃ D2n given by (4) is the rotation

group of the map, consisting of all its orientation-preserving au-

tomorphisms.

The dual map of M2n is defined by D(M2n) = (G; t, rt, st); it

has type {2, 2n} and can be visualised as an equatorial cycle of

length 2n on a sphere. The Petrie-dual map P (M2n) is of the form
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P (M2n) = (G; s, rt, t) and is of type {2n, 2n}. The rotation group

(that is, the group of all orientation-preserving automorphisms)

of the Petrie dual is generated by r and st and hence is Abelian,

in contrast with the rotation group of the original map (which is

dihedral and hence non-Abelian for n ≥ 2).

Summing up, these three maps, M2n, D(M2n) and P (M2n)

are pairwise non-isomorphic. Application of operators of dual-

ity and Petrie-duality can be repeated but due to the fact that

⟨P,D⟩ ∼= S3 one obtains only three more maps this way, with

automorphism group presentations as follows:

DP (M2n) = (G; s, rt, st), PD(M2n) = (G; t, rt, s) and finally

DPD(M2n) = PDP (M2n) = (G; st, rt, s).

But among the six maps obtained by a repeated use of the

operators D and P only three are pairwise non-isomorphic, be-

cause the automorphism of D∗
2n that fixes rt and interchanges s

with t implies that P (M2n) ≃ DP (M2n), D(M2n) ≃ PD(M2n)

and M2n ≃ DPD(M2n) ≃ PDP (M2n).

Finally, we will look at rotational powers and possible expo-

nents of the maps M2n. By our earlier description of rotational

powers, if j is an arbitrary unit (mod 2n), the j-th rotational

power M
(j)
2n is the regular map M(st, rjt, t). Since the assign-

ment r 7→ rj , s 7→ s, t 7→ t extends to an automorphism of the

group D∗
2n, it follows that the regular maps M2n and M

(j)
2n are

isomorphic, and every unit (mod 2n) is an exponent of M2n.
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We are now ready to present the main findings of our disser-

tation. In the process we will use the same numbering of results

as in our Dissertation, together with page numbers.

To put the suggestions made by Jones in [7] under scrutiny,

we first determined the intersection of kernels of all epimorphisms

Γ → D∗
2n, where the parent group Γ is the one of (1) but presented

in the form

Γ = ⟨R,S, T |S2, T 2, (ST )2, (RT )2⟩ (5)

This was quite complicated and resulted in:

Proposition 1 [page 33]: For n > 1 the number of epimor-

phisms Γ → D∗
2n is 96nφ(n) if n is even, and 72nφ(n) if n is

odd.

We also determined the order of the automorphism group of

the extended (classical) dihedral grooup (D∗
2n given by (4) with

te following outcome.

Proposition 2 [page 33]: For n > 1 the number of automor-

phisms of the group D∗
2n is 32nφ(n) if n is even, and 24nφ(n) if

n is odd.

Propositions 1 and 2 have the following immediate conse-

quence.

Corollary 1 [page 33]: The epimorphisms Γ → D∗
2n have

exactly three distinct kernels.

Recall that the parallel product M2n × P (M2n) × D(M2n)
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is defined by the subgroup H of G × G × G for G = D∗
2n =

⟨x, y, z⟩, where H is the subgroup of G×G×G generated by three

triples of involutions (x, xP , xD), (y, yP , yD) and (z, zP , zD). An

analysis carried out on pages 34 to 37 of our Dissertation, which

is essentially equivalent to determination of Smith’s normal form

for the Abelian part of H, led to a surprising outcome: while the

order of H turned out to be 8n3 for every odd n > 1 as expected,

for even n we found that |H| = 4n2, a half of the expected order.

Working further up to deriving presentations for H, for odd n > 1

we arrived at Wilson’s groups, that is, for odd n > 1 we found

that

H = ⟨a, b, c | a2, b2, c2, (ac)2, (ab)2n, (bc)2n, [(ab)2, (bc)2]⟩ (6)

For even n, however, the group H of order 4n turned out to be

determined by the presentation generated by the same involutions

a, b, c but with relators

⟨a2, b2, c2, (ac)2, (ab)2n, (bc)2n, [(ab)2, (bc)2], (a(bc)n)2⟩ (7)

All these findings are summarized in the following Theorem.

Theorem [page 37]: Let n > 1 and let M be the fully regular

orientable map arising from the parallel product M2n×P (M2n)×
D(M2n). If n is odd, the full automorphism group of M has

order 8n3 and admits a presentation (6); this group is isomorphic

to the Wilson group given by (2). If n is even, then the full
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automorphism group of M has order 4n3 and has a presentation

of the form (7); the group is in this case a quotient of the Wilson

group (2) by a normal subgroup of order 2. In both cases, M is

super-symmetric.

In Chapter 5 of our dissertation we extended our investigation

of constructions of super-symmetric maps to generalized dihedral

groups. These groups, denoted Gn,e in Chapter 5, are defined

by the presentation Dn,e = ⟨r, s | r2n, s2, srsr−e⟩. By letting

x = st, y = rt, z = t in a presentation (4) we obtain the regular

map Mn,e, with automorphism group G = Aut(Mn,e) presented

in the form G = ⟨x, y, z | x2, y2, z2, (xz)2, (zy)m, (yx)ℓ, . . .⟩, so

that

Mn,e = (G;x, y, z) = (G; st, rt, t).

This map has type {ℓ,m} = { 4n
gcd(2n,e+1) , 2n}. The dual D(Mn,e)

and the Petrie dual P (Mn,e) of the map Mn,e have the form

D(Mn,e) = (G; t, rt, st) and P (Mn,e) = (G; s, rt, t) and types

{2n, 4n
gcd(2n,e+1)} and { 4n

gcd(2n,e−1) , 2n} respectively. On pages 39

to 41 of our Dissertation we proved the following Lemma.

Lemma 1 [page 42]: Let n be a positive integer divisible by

4 and let e ̸= ±1 be a residue class (mod 2n) such that e2 ≡ 1

(mod 2n). Then the following holds:

(i) If e ≡ n−1 (mod 2n), then Mn,e ≃ PDP (Mn,e), P (Mn,e) ≃
DP (Mn,e) and D(Mn,e) ≃ PD(Mn,e).
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(ii) If e ≡ n + 1 (mod 2n), then Mn,e ≃ D(Mn,e), P (Mn,e) ≃
PD(Mn,e) and DP (Mn,e) ≃ PDP (Mn,e).

Because of their exceptionality we call the values n±1 mod 2n

median. The maps Mn,e admit all admissible exponents, which

follows from the fact that the mapping φ : r 7→ rj , s 7→ s, t 7→ t

gives an automorphism of the group D∗
n,e.

We now proceed analogously as in the study of products based

on classical dihedral groups, but with detail that are even more

complex. The first task is to count the number of epimorphisms

from the parent group Γ given by the presentation (5). Findings

we gathered in this area can be stated as follows. Looking for all

epimorphisms from the group

Γ = ⟨R,S, T |S2, T 2, (ST )2, (RT )2⟩

to the extended generalized dihedral group D∗
n,e evolved to the

following task; determine the ratio |Epi(Γ→D∗
n,e)|/|Aut(D∗

n,e)|.
Calculations carried out on pages 42 to 44 give the following main

results:

Proposition 3 [page 43]: Let n > 1 be a positive integer and

let e be a residue class (mod 2n) such that e2 ≡ 1 (mod 2n) and

e ̸= ±1. The number of distinct epimorphisms from the group Γ

onto the group D∗
n,e is equal to 6 νeφ(2n).

Proposition 4 [page 44]: Let n > 1 be a positive integer

and let e ̸= ±1 be a residue class (mod 2n) such that e2 ≡ 1
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(mod 2n). The order of the automorphism group of D∗
n,e is equal

to

|Aut(D∗
n,e)| =

 νe φ(2n) if e is not median,

4nφ(2n) if e is median.
(8)

From this information we can make the following conclusion.

Conclusion [page 44]: If e ̸= ±1, then the epimorphisms Γ →

D∗
n,e have exactly 3 distinct kernels if e is median, and exactly 6

distinct kernels if e is not median.

The surprising outcome is that, up to two exceptions (the me-

dian values) the number of epimorphisms in the above Conclusion

does not depend on e at all.

Although in general the above epimorphisms have 6 distinct

kernels, we nevertheless show that it is sufficient to take only 3 of

them to form super-symmetric maps from extended generalized

dihedral groups. Let M̃ = M̃n,e be the parallel product Mn,e ×
PD(Mn,e)×DP (Mn,e).

Calculations similar to these done in the case of classical di-

hedral groups but made harder because of the extra parameter e,

and again based on the analysis of the largest Abelian subgroup

of Aut(M̃n,e) and replacing considerations of its Smith normal

form with a more direct approach, give the following surprising

result. First, the group H = Aut(M̃n,e) does not depend on e

at all, again! Second, the presentations of H for odd n > 1 and

even n ≥ 2, respectively, are exactly the same as in the classical
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case (and, reiterating, they do not depend on e). In particular,

one obtains

Theorem 2 [page 46] : Let n > 1 be an arbitrary integer

and let e ̸= ±1 such that e2 ≡ 1 (mod 2n). Further, let M̃ be

the fully regular orientable map arising from the parallel product

Mn,e×PD(Mn,e)×DP (Mn,e). If n is odd, the full automorphism

group of M̃ has order 8n3 and admits a presentation (6); this

group is isomorphic to the Wilson group given by (2). If n is

even, then the full automorphism group of M̃ has order 4n3 and

has a presentation of the form (7); the group is in this case a

quotient of the Wilson group (2) by a normal subgroup of order

2. In both cases M̃ is super-symmetric.
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