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Abstract

We present a compact implicit well-balanced high-resolution

numerical scheme for conservation and balance laws. The numer-

ical scheme is derived by the approximation of the dominant error

term of the first order implicit numerical scheme. We use the fi-

nite Taylor series and the Lax-Wendroff procedure, where mixed

space-time derivatives are used. For the systems of equations,

we express the numerical flux functions using the characteristic

variables. For the balance laws, we extend the numerical scheme

to be well-balanced, and we preserve the stationary solutions for

the Burgers’ equation with source term and for the shallow water

equations with topography. Several numerical experiments are

performed to show the properties of the numerical scheme.
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Abstrakt

V práci prezentujeme kompaktnú implicitnú dobre vyváženú

numerickú schému vysokého rozlíšenia pre zákony zachovania a

rovnováhy. Numerická schéma je odvodená pomocou aproximá-

cie chybového člena metódy prvého rádu presnosti. Použijeme

konečný Taylorov rozvoj a Lax-Wendroff procedúru, v ktorej sú

použité zmiešané časové a priestorové derivácie. Pre systémi

rovníc vyjadríme numericke funkcie tokov pomocou charakter-

istických premenných. Pre zákony o rovnováhe rozšírime nu-

merickú schému aby bola dobre vyvážená a zachovávame sta-

cionárne riešenia pre Burgersovú rovnicu so zdrojovým členom

a pre rovnice plytkej vody s topografiou. Vykonali sme viacero

numerických experimentov aby sme prezentovali vlastnosti nu-

merickej schémy.
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1 Introduction

The world around us is full of interesting natural phenom-

ena, and thanks to human curiosity, we are able to understand

some of them. In applied mathematics, people develop mathe-

matical models for such natural phenomena. For many fluid flow

processes, the hyperbolic partial differential equations [18] were

derived.

Numerical methods are used to obtain the solutions of the

hyperbolic PDEs. We aim to time discretization methods with

mixed temporal and spatial discretization methods based on the

Taylor series expansion and using the Lax-Wendroff procedure.

For hyperbolic problems, this approach is used in the context of

the neoconservative advection equation used in the level set meth-

ods in [8, 10], where the resulting algebraic system has a simpler

form. This type of method was introduced in finite volume frame-

work for the scalar advection method in [22, 23], and applied in

[9, 14, 15]. In the parametric form and for the linear advection

equation in the conservative form, the scheme was presented in

[7]. For the neoconservative advection equation for level set meth-

ods, the scheme is presented in [11]. The compact implicit high-

resolution scheme derived for the nonlinear conservation laws is

presented in [12] and uses the essentially non-oscillatory (ENO)

method [27, 28] or the high-resolution limiter [6, 12].
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The numerical scheme is well-balanced if it is able to preserve

the stationary solutions of the balance laws. Our aim is to pro-

pose well-balanced compact implicit schemes that can preserve

exact stationary solutions, if available. The stationary solutions

for the shallow water equations with zero velocity are called “Lake

at rest”, and with nonzero velocity are called “moving water equi-

libria”. Various methods are developed to preserve all such sta-

tionary solutions described, for example, in [1, 3, 4, 5, 13, 16, 17,

21, 24, 25, 26, 29]. In the context of the compact implicit scheme,

such a well-balanced property was introduced in [30].

The derivation of the scheme is described using the approxi-

mation of the dominant error term of the first order method. To

approximate the error term, Taylor’s expansion and the procedure

similar to the Lax-Wendroff procedure [27] is used. Furthermore,

the parametric finite difference approximations are used to ob-

tain the second order accurate scheme. Using solution-dependent

values of the scheme parameters computed by, e.g. ENO or

high-resolution limiter, the high-resolution form of the scheme

is achieved. For the systems of equations, we use the approach

of the characteristic variables [2, 6, 19]. For the well-balancing,

the compact implicit high-resolution scheme approach similar to

[13, 26] is used to preserve the “Lake at rest” and “moving water”

stationary solutions.

7



2 Scalar conservation laws

The scalar conservation laws can be represented by the non-

linear hyperbolic equation in the following form

∂tq + ∂xf(q) = 0 , q(x, 0) = q0(x) , x ∈ Ω ⊂ R , t > 0, (1)

where x and t are the spatial and temporal variable, respectively,

q = q(x, t) represents the unknown function with initial values

prescribed by a given function q0 and f = f(q) is a given smooth

flux function.

The numerical scheme can be written in the standard form of

conservative schemes [18] for the equation (1)

qn+1
i +

∆t

∆x

(
Fn+1
i+1/2 − Fn+1

i−1/2

)
= qni , (2)

where the numerical fluxes Fn+1
i±1/2 are specified by the numerical

flux functions.

To derive our numerical method, the approach of the frac-

tional step method is used [20]. Firstly, one chose flux splitting,

where the flux function f is split into the sum of two functions

f+ and f− having nonnegative and nonpositive derivatives

f = f+ + f− ,
df+

dq
≥ 0 ,

df−

dq
≤ 0 , q ∈ R .

There are several options for flux splitting, and one of our choices

is the Lax-Friedrichs (L-F) flux vector splitting [28] defined as
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follows

f+(q) =
1

2
(f(q) + αq) , f−(q) =

1

2
(f(q)− αq) ,

where the parameter α is fixed at the maximum value of |f ′(q)|
over the considered values of q.

We replace the numerical scheme written in the standard

form (2) using the fractional step method combined with the fast

sweeping method [20]. The approach consists of two partial steps,

where each partial scheme is solved algebraically in the downwind

direction. The first step, the forward step, now has the form

q
n+1/2
i +

∆t

∆x
F

+,n+1/2
i+1/2 = qni +

∆t

∆x
F

+,n+1/2
i−1/2 , i = 1, 2, . . . , I . (3)

The second step, the backward step, has the form

qn+1
i − ∆t

∆x
F−,n+1
i−1/2 = q

n+1/2
i − ∆t

∆x
F−,n+1
i+1/2 , i = I−1, I−2, . . . , 0 .

(4)

To obtain a complete numerical scheme, one has to suggest an

appropriate numerical flux function F
+,n+1/2
i+1/2 for the forward step

(3) and F−,n+1
i−1/2 for the backward step (4) to approximate f+(q)

and f−(q). If we use the approximation as in [20], we obtain the

first order implicit scheme in the following form for the forward

step

q
n+1/2
i +

∆t

∆x

(
f+(q

n+1/2
i )− f+(q

n+1/2
i−1 )

)
= qni ,
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and for the backward step

qn+1
i +

∆t

∆x

(
f−(qn+1

i+1 )− f−(qn+1
i )

)
= q

n+1/2
i .

The advantage of the described first order implicit numeri-

cal scheme is its stability and that each algebraic equation con-

tains only one unknown qn+1
i , which is a consequence of the up-

wind principle. The main disadvantage is the low accuracy of the

scheme. We aim to preserve the advantages of the scheme and

improve accuracy.

2.1 High-resolution compact implicit scheme

To obtain the high-resolution form of the scheme, we have to

control the second order update. To do so, we use two modifica-

tions for each numerical flux function. The first one is to define

solution-dependent values of ω. The second one is to decrease

the value of the second order update using a factor l with values

less than one. The resulting parametric form of the numerical

flux functions in the high-resolution compact implicit numerical

scheme is then presented as follows for the forward step

F+,n+1
i+1/2 = f+(qn+1

i )− li
2 ((1− ωi)(f

+(qn+1
i )− f+(qni+1))+

ωi(f
+(qn+1

i−1 )− f+(qni ))) ,

where the parameters ωi ∈ [0, 1] and li ∈ [0, 1] will be defined

later. The values of the parameters are different in the forward
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and the backward step in the fractional step method for the same

grid point xi. The different values of the parameters are also used

for each time step. For the values of the parameters, we compute

the special indicator r defined by the following term

ri =
qn+1
i−1 − qni

qn+1
i − qni+1

.

Once this special indicator is computed, the limiters like ENO,

WENO, TVD, etc., can be used. We prefer to use the high-

resolution limiter described in the thesis.

3 System of conservation laws

The system of conservation laws can be written in the vector

form as follows

∂tq+ ∂xF(q) = 0 , q(x, 0) = q0(x) , x ∈ Ω ⊂ R , t > 0 ,

where q = q(x, t) is a vector of unknown functions prescribed at

t = 0 by the given initial condition q0, and F=F(q) is the flux

vector function.

The forward step is defined for the system of equations in the

following form

q
n+1/2
i +

∆t

∆x
F
+,n+1/2
i+1/2 = qn

i +
∆t

∆x
F
+,n+1/2
i−1/2 , i = 1, 2, . . . , I , (5)
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and the backward step, for the system of equations, has the form

qn+1
i − ∆t

∆x
F−,n+1
i−1/2 = q

n+1/2
i − ∆t

∆x
F−,n+1
i+1/2 , i = I−1, I−2, . . . , 0 ,

with the numerical flux functions defined using the characteristic

variables. Therefore, in the forward step (5) of the fractional step

method, where we consider only F+(q), our aim is to express the

terms F+(qn+1
i )−F+(qn

i+1) and F+(qn+1
i−1 )−F+(qn

i ) as the linear

combination of the eigenvectors. For the unknown value qn+1
i in

the first term, we use the value qk,n+1
i from the predictor step or

from the previous corrector step. We use auxiliary vector vari-

ables γ+
i = (γ+,1

i , . . . , γ+,m
i ) and β+

i = (β+,1
i , . . . , β+,m

i ) which

are defined as following

γ+
i = (R+)−1 ·

(
F+(qk,n+1

i )− F+(qn
i+1)

)
,

β+
i = (R+)−1 ·

(
F+(qn+1

i−1 )− F+(qn
i )
)
,

where the (R+)−1 is the inverse matrix of R+(q). The flux vector

function F+,n+1
i+1/2 expressed using the characteristic variables has

the form

F+,n+1
i+1/2 = F+(qn+1

i )− 1

2

m∑
p=1

lpi

(
(1− ωp

i )γ
+,p
i + ωp

i β
+,p
i

)
r+,p .

Note that the parameters ωi and li are now associated with the

components in γ±
i and β±

i .
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4 System of balance laws

The system of balance laws can be represented in the vector

form as follows

∂tq+ ∂xF(q) = S(q)∂xH , (6)

where q = q(x, t) is a vector of unknown functions, F=F(q) is

the flux vector function, S=S(q) is the source vector function and

H = H(x) is a given smooth function.

4.1 Well-balanced compact implicit scheme

The numerical scheme uses the fractional step method, and

we split the flux vector function into the sum F = F+ + F−,

where the Jacobian has nonnegative and nonpositive eigenvalues

for F+(q) and F−(q) respectively. For the source vector function

S(q), we consider also the splitting S = S++S− with the simplest

choice S± = 1
2S.

The resulting scheme can be written in the form

qn+1
i + ∆t

∆x

(
F+,n+1
i+1/2 − F+,n+1

i−1/2

)
=

qn
i +∆t

(
S+(qn+1

i )+S+(qn
i )

2

)
∂xH(xi) ,

(7)

where the numerical flux vector functions are defined identically

as for the systems of conservation laws using the approach of the

characteristic variables.
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Now, we present the details for the well-balance property. To

realize it, one has to solve the following ordinary differential equa-

tion (ODE) to find the stationary solution of (6)

∂xF(q
∗) = S(q∗)∂xH(x) , (8)

with the initial value q∗(xi) = qn
i . The solution of the (8) is the

stationary solution q∗,n
i (x). and for the grid nodes we use the

following notation q∗,n
j,i := q∗,n

i (xj). The stationary solution q∗,n
j,i ,

the so called local equilibrium, shall be computed for each grid

point xj for the corresponding stencil j = i − 2, .., i + 1 for the

forward step and j = i− 1, .., i+ 2 for the backward step.

The procedure for the well-balanced numerical schemes used

for our compact implicit scheme is based on the procedure from

[26]. The idea is to add the following terms into the scheme (7)

for the given stationary solution
∆t

∆x

(
F+,n
i+1/2,i −F+,n

i−1/2,i

)
−∆tS+(q∗,n

i,i )Hx(xi) ,

where

F+,n
i+1/2,i = F+(q∗,n

i,i )−
li
2 ((1− ωi)(F

+(q∗,n
i,i )− F+(q∗,n

i+1,i))

+ωi(F
+(q∗,n

i−1,i)− F+(q∗,n
i,i ))) ,

and analogously for F+,n
i−1/2,i. In the approach of using the char-

acteristic variables the function F+,n
i+1/2,i has the following form

F+,n
i+1/2,i = F+(q∗,n

i,i )−
1

2

m∑
p=1

lpi

(
(1− ωp

i )γ
∗,+,p
i + ωp

i β
∗,+,p
i

)
r+,p ,

14



where the variables γ∗,+
i and β∗,+

i are defined as following

γ∗,+
i = (R+)−1 ·

(
F+(q∗,n

i,i )− F+(q∗,n
i+1,i)

)
,

β∗,+
i = (R+)−1 ·

(
F+(q∗,n

i−1,i)− F+(q∗,n
i,i )

)
.

Note that R± = [r±,1, . . . , r±,p] represents the matrix of the eigen-

vectors of the system (6) for q = qn+1
i .

The resulting well-balanced high-resolution numerical scheme

can be written considering only F+(q) and S+(q) in the following

form

qn+1
i + ∆t

∆x

(
F+,n+1
i+1/2 −F+,n

i+1/2,i − (F+,n+1
i−1/2 −F+,n

i−1/2,i)
)
=

qn
i +∆t

(
S+(qn+1

i )+S+(qn
i )

2 − S+(q∗,n
i )

)
∂xH(xi) .

5 System of balance laws in 2D

In general, the system of balance laws in two dimensions can

be written using the following vector form

∂tq+ ∂xF(q) + ∂yG(q) = S1(q)∂xH + S2(q)∂yH ,

where q(x, y, t) is the vector of the unknown conservative vari-

ables, F(q) and G(q) are the flux vectors in x and y directions

respectively, and S1(q) and S2(q) are the source term vectors.

The H = H(x, y) is a given smooth function.
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5.1 Well-balanced compact implicit
scheme in 2D

The splitting of the flux vectors and the source vectors is con-

sidered as F(q) = F+(q) + F−(q), G(q) = G+(q) +G−(q) and

S1,2(q) = S+
1,2(q) + S−

1,2(q). Using the approach of the diagonal

sweeps [20], the numerical solution in time step tn+1 is obtained

by two steps considering, e.g. F+(q), G+(q), and S+
1,2(q) in the

first step and F−(q), G−(q), and S−
1,2(q) in the second step. The

well-balanced high-resolution numerical scheme has then the form

for the first diagonal step

q
n+1/2
i,j + ∆t

∆x

(
F
+,n+1/2
i+1/2,j −F+

i+1/2,j − (F
+,n+1/2
i−1/2,j −F+

i−1/2,j)
)

+∆t
∆y

(
G

+,n+1/2
i,j+1/2 − G+

i,j+1/2 − (G
+,n+1/2
i,j−1/2 − G+

i,j−1/2)
)
=

qn
i,j +∆t

(
S+
1 (q

n+1/2
i,j )+S+

1 (qn
i,j)

2 − S+
1 (q

∗
i,j)

)
∂xH(xi, yj)+

∆t

(
S+
2 (q

n+1/2
i,j )+S+

2 (qn
i,j)

2 − S+
2 (q

∗
i,j)

)
∂yH(xi, yj) ,

i, j = 1, 2, . . . , I .

For the opposite diagonal step, an analogous form is used.

The approach of the characteristic variables is used, and the

numerical flux vector function are defined similarly to the one

dimensional case.
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6 Numerical experiments

For the scalar conservation laws, we solve the Burgers’ equa-

tion for the different values of the scheme parameters, and we

compare the results between different parameters or with the first

order implicit numerical scheme or if it is available with the exact

solution.

For the system of hyperbolic equations, we solve Euler equa-

tions, where the numerical solution consists of several waves with

different behaviour. We test the numerical scheme using the char-

acteristic variables approach for the case of nonlinear systems of

hyperbolic equations.

To test the well-balanced form of the scheme, we solve the

shallow water equations with topography for the system of equa-

tions. We test the ability of the scheme to preserve the stationary

solutions using them as the initial conditions. Furthermore, we

performed the perturbations of the stationary solutions.

Using the well-balanced high-resolution numerical scheme in

two dimensions, we test the scheme to preserve the stationary

solution of the shallow water equations with topography.

6.1 Burgers’ equation

This numerical experiment for the Burgers’ equation combines

both Riemann’s problems, and one observes a shock wave followed

17



by the rarefaction wave [15, 20]. We aim to test the behaviour of

the high-resolution scheme in the nontrivial interaction between

rarefaction and shock wave for a large time step ∆t = 4∆t.

We present the results in Figure 1 in the time t = 1/2 where

the waves merge and in the final time T = 1. The behaviour of the

high-resolution scheme is perfect, especially around the merging

point of two waves. We obtained a higher accuracy than the first

order scheme.

Figure 1: Initial condition and the comparison of the exact and nu-
merical solutions for the example with triangular profile obtained with
the first order numerical scheme and the high-resolution scheme with
the HR limiter. The results are plotted for the mesh with I = 160

and maximal Courant number C = 4. The left picture represents the
results in the waves merging time t = 1/2 and the right picture in the
final time T = 1
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6.2 Euler equations

We solve the numerical experiment called Sod’s shock tube

problem to test the ability of the scheme to solve the shock wave,

rarefaction wave and contact discontinuity for the system of Euler

equations. The problem is a special case of the Riemann problem.

The shock tube is filled with the same gas at different pres-

sures and densities, separated by a membrane placed in the centre

of the tube. At the initial time, the membrane is ruptured. The

solution consists of the shock wave moving into the part at lower

pressure and the rarefaction wave moving into the part at higher

pressure. The interface between gas states is contact disconti-

nuity. We solved this numerical experiment with two different

meshes with I = 80, 640, and the Courant number’s maximal

value is C = 4.4. The value of the parameters of the scheme is

set using the HR limiter. The solution is compared with the so-

lution obtained by the first order implicit numerical scheme and

with the exact solution.
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Figure 2: The initial condition and the comparison of the exact and
numerical solutions for the density ρ obtained with the first order nu-
merical scheme and the high-resolution scheme with the HR limiter.
The results are plotted for the mesh with I = 80 in the left picture and
the mesh with I = 640 in the right picture. The final time is T = 0.4,
and the maximal Courant number is C = 4.4

6.3 Burgers’ equation with source term

We first solve the scalar balance laws using the well-balanced

high-resolution (WBHR) scheme. The following equation repre-

sents the Burgers’ equation with the source term

∂tq + ∂x(
q2

2
) = q2∂xH ,

where H = H(x) is a given function in the form

H(x) = x+ 0.1 sin(100x) ,

and the experiment is computed until the final time T = 8. For

the perturbation of the stationary solution, we used the initial

condition in the following form

q(x, 0) = ex+0.1 sin(100x) + 0.1e−200(x+0.5)2 .
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The initial perturbation left the computational domain, and the

stationary solution is preserved in the final time T . The results

are plotted in Figure 3 for the mesh with I = 160.

Figure 3: Initial condition and solution obtained by the well-balanced
scheme for the mesh with I = 160 with the HR limiter in the left figure.
Difference between the numerical solution and the stationary solution
in the right figure. The final time is T = 8 and maximal Courant
number is C = 6.4

6.4 Shallow water equations with topography in 1D

In the following numerical experiment, we test the ability of

the scheme to preserve the moving water equilibria. We use the

computational domain Ω = [0, 2] and the topography H(x) given

by the following function

H(x) =

0.25(1 + cos(10π(x− 1.5))) 1.4 ≤ x ≤ 1.6

0 otherwise .
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We perform the perturbations of the stationary solutions at the

initial condition as follows

h(x, 0) =

h∗(x) + ϵ 1.1 ≤ x ≤ 1.2 ,

h∗(x) otherwise ,
u(x, 0) = u∗(x) . (9)

The numerical experiments are computed using several meshes,

and the maximal Courant number is always greater than one. The

boundary conditions for the examples with the initial condition

as the stationary solution and its perturbations are set using the

values from the stationary solution.

6.4.1 Subcritical flow

The experiments are performed with the subcritical flow. We

test the ability of the scheme to preserve the stationary solution,

we perform the perturbation to the initial condition as the sta-

tionary solution, and we compare the convergence of the solution

in the final time T = 0.1. For the visual comparison, the reference

solution is computed using the WBHR scheme with the Courant

number C = 0.7 and using the mesh with I = 2560.

The results for the case where the initial condition is set as

the stationary solution are presented in Figure 4. We plotted

the variables h, u, q and the topography H(x). The difference

between the stationary and numerical solution for the variable q

is also plotted.
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Figure 4: Solution obtained using the WBHR scheme with the mesh
with I = 320 for the subcritical flow in the left figure. Difference
between the stationary and numerical solution for the variable q in the
right figure. The final time is T = 2 and maximal Courant number is
C = 5.8

The convergence of the solution with the initial condition set

as (9) with the ϵ = 0.001 is shown in Figure 5, where we present

the convergence for the solutions for the variable h and u. We

compare the solutions to the reference ones.

Figure 5: Convergence of the numerical solution for the subcritical flow
with the initial perturbation with ϵ = 0.001. The final time is T = 0.1

and the maximal Courant number is C = 5.8
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6.5 Shallow water equations with topography in 2D

The steady vortex numerical experiment [21] is chosen to test

the numerical scheme in two dimensions. For two dimensional

stationary solution, we test the ability of the scheme to preserve

the steady state.

The topography H(x, y) is given by the smooth function

H(x, y) = 0.2e0.5(1−(x2+y2)) .

For the initial and boundary conditions, the exact solution is

used. The results are plotted in Figure 6, The well-balanced high-

resolution scheme preserved the stationary solution using the HR

limiter up to the machine accuracy.
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Figure 6: Top view on the numerical solution of the steady vortex
obtained by the WBHR scheme for the free surface h + H in the left
figure and for the norm of the velocity in the right figure. The solution
is computed using HR limiter mesh 128× 128 until the final time T =

1.125, and the maximal Courant number in each direction is C = 3.78
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